Über einige siliciumhaltige Heterocyclen

Von

M. Wieber und G. Schwarzmann

Aus dem Institut für Anorganische Chemie der Universität Würzburg

(Eingegangen am 20. September 1968)

Chlormethyldimethylchlorsilan ist unter schonenden Reaktionsbedingungen zum 1,3-Bischlormethyltetramethyldisilthian thiolisierbar. Dieses Disilthian sowie ein entsprechendes -disilazan und -germasiloxan reagieren mit Na₂S unter Substitution der C—Cl-Bindung zu siliciumhaltigen Heterocyclen. Durch $\rm H_2S$ findet neben dieser Substitution auch eine Reaktion an der $\rm Si-X$ —Si-Bindung statt.

On Silicon Containing Heterocycles

Chloromethyldimethylchlorosilane reacts with $\rm H_2S$ under mild conditions to give 1.3-bis(chloromethyl)tetramethyldisilthiane. The chlorine-carbon bonds of the latter compound as well as of the corresponding disilazane and germasilazane undergo further reaction with Na₂S forming silicon-containing heterocycles. In other reactions, $\rm H_2S$ was found to react also with the Si—X—Si bonds.

1,3-Bischlormethyltetramethyldisiloxan und das entsprechende Disilazan sind schon lange bekannt^{1, 2} und werden durch Hydrolyse bzw. Ammonolyse von Chlormethyldimethylchlorsilan hergestellt. Bisherige Versuche, ein entsprechendes Disilthian, nämlich 1,3-Bischlormethyltetramethyldisilthian, auf ähnliche Weise durch Thiolyse von Chlormethyldimethylchlorsilan darzustellen, schlugen fehl: wegen der im Vergleich mit den Si—O—Si-, Si—NH—Si- und Si—Cl-Bindungen geringen Stabilität der Si—S—Si-Bindung reagiert H₂S ohne Basenzusatz nicht mit einer Si—Cl-Funktion. Bei Zusatz von Triäthylamin findet bei Zimmertemperatur nach der Gleichung

¹ R. H. Krieble und I. R. Elliot, J. Amer. Chem. Soc. **68**, 2291 (1946).

² M. Schmidt und M. Wieber, Inorg. Chem. 1, 909 (1962).

auch eine Substitution der am Kohlenstoff gebundenen Chloratome unter Bildung von 2,2,5,5-Tetramethyl-2,5-disila-1,4-dithian (1) statt². Diese Verbindung (1) ist auch, wie wir zeigen konnten², gut aus 1,3-Bischlormethyltetramethyldisilazan und Schwefelwasserstoff synthetisierbar, wobei zunächst wohl eine Si—SH-Bindung entsteht, in zweiter Stufe aber dann auch durch den bei der Reaktion freigesetzten Ammoniak eine Substitution des Kohlenstoffchloratoms durch Schwefel erfolgt. Kondensiert man bei — 78° C äquivalente Mengen Chlormethyldimethylchlorsilan und Schwefelwasserstoff (mit Collidin als Chlorwasserstoffacceptor) zusammen und läßt unter Rühren langsam auftauen, so erhält man nach der Gleichung

2
$$(ClCH_2)(CH_3)_2SiCl + H_2S + 2$$

$$+ [(ClCH_2)(CH_3)_2Si]_2Si$$

$$+ HCl$$

das gesuchte einfachste organofunktionelle Disilthian, 1,3-Bischlormethyltetramethyldisilthian (2), in ca. 70% Ausbeute. Diese Substanz stellt eine farblose, ölige, hydrolyseempfindliche Flüssigkeit (Sdp._{0,1} 71—74°C) dar.

Durch Umsetzung von 2 mit einem Mol Schwefelwasserstoff (und Triäthylamin als Chlorwasserstoffacceptor) wurde nun versucht, die beiden an den Kohlenstoffatomen gebundenen Chloratome zu substituieren, um dadurch das zu 1 isomere 2,2,6,6-Tetramethyl-2,6-disila-1,4-dithian zu erhalten. Es zeigte sich jedoch, daß auch hier Verbindung 1 entsteht; dies deutet darauf hin, daß Schwefelwasserstoff primär die Si—S—Si-Bindung unter Bildung von zwei Si—SH-Bindungen angreift, und daß dann das stark polarisierte Schwefelatom in diesem Siliciumthiol bzw.

-thiolat das Chloratom am Kohlenstoff nucleophil substituiert. Im Einklang mit diesem Reaktionsablauf steht auch die Bildung von 1 aus 1,3-Bischlormethyltetramethyldisilazan und Schwefelwasserstoff¹.

Wie wir schon bei entsprechenden Germaniumverbindungen feststellen konnten 3 wird eine Me-X-Me-Bindung durch trockenes Natriumsulfid in Benzol nicht angegriffen.

Nach der Gleichung

$$[(\mathrm{CICH_2})(\mathrm{CH_3})_2\mathrm{Si}]_2\mathrm{S} + \mathrm{Na}_2\mathrm{S} \longrightarrow 2 \ \mathrm{NaCl} + \ \mathrm{CH_3} \ \ \mathrm{CH_2} \ \ \mathrm{CH_2} \ \ \mathrm{CH_2} \ \ \mathrm{CH_2}$$

erhält man 2,2,6,6-Tetramethyl-2,6-disila-1,4-dithian (3) in ca. 50% Ausbeute, wenn man trockenes Natriumsulfid und äquivalente Mengen 2 zusammen in Dimethylglykol 8 Tage lang bei 80°C rührt. Das destillierbare, farblose Öl (Sdp._{0,1} 62—64°C) unterscheidet sich von der isomeren Verbindung 1 (Schmp. 82°C) vor allem durch sein ¹H-NMR-Spektrum*

Verb.

$$\delta_{\text{CH}_2}$$
 (ppm)
 δ_{CH_3} (ppm)

 1
 1,83
 0,41

 3
 2,04
 0,18

und durch Reaktionen. So reagiert 3 im Unterschied zu 1 mit Methyljodid zu einem Methylsulfoniumsalz (Schmp. 137—139°C). Dies beweist u. a. das Vorliegen einer C—S—C-Bindung, da bekannt ist, daß weder C—S—Si- noch Si—S—Si- zur Sulfoniumsalzbildung befähigt sind.

Nach derselben Methode, d. h. Umsetzung von trockenem Natriumsulfid mit äquivalenten Mengen 1,3-Bischlormethyltetramethyldisilazan (4), gelang es, nach

das lange gesuchte 2 3,3,5,5-Tetramethyl-3,5-disila-4-aza-1-thian (5) in etwa 40% Ausbeute darzustellen (Sdp._{0,1} 60° C). Auch 5 bildet beim

^{*} Aufgenommen in 5proz. CCl₄-Lösung gegen TMS (int.); Varian A 60 (60 Me).

³ M. Wieber und G. Schwarzmann, Mh. Chem. 99, 255 (1968).

Stehen mit überschüssigem Methyljodid ein Sulfoniumsalz (Schmp. 139—141° C).

Durch Umsetzung des einfachsten organofunktionellen Germasiloxans, 1,3-Bischlormethyltetramethylgermasiloxan⁴, mit Natriumsulfid erhält man nach

(CICH₂) (CH₃)₂Si—O—Ge(CH₃)₂(CH₂Cl) + Na₂S
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

unter Erhalt der an sich ziemlich labilen Si-O-Ge-Bindung und ausschließlicher Substitution der Chloratome 2,2,6,6-Tetramethyl-1-oxa-4-thia-2-sila-6-germacyclohexan (7).

Verwendet man bei dieser Umsetzung anstelle von Na₂S Schwefelwasserstoff und Triäthylamin als Hilfsbase, so nimmt die Reaktion einen anderen Verlauf. Durch SH- wird dabei primär die Si-O-Ge-Bindung gespalten, wobei sich wahrscheinlich intermediär Silanol und Germathiol bilden:

$$6 + H_2S \longrightarrow (ClCH_2) (CH_3)_2SiOH + (ClCH_2) (CH_3)_2GeSH$$
,

welche unter Wasser- bzw. Schwefelwasserstoffabspaltung zu Siloxan bzw. Germathian reagieren. Diese so entstandenen Verbindungen reagieren dann, wie bereits an anderer Stelle beschrieben^{3, 5} zum 2,2,6,6-Tetramethyl-2,6-disila-1-oxa-4-thian (9) bzw. 2,2,6,6-Tetramethyl-2,6-digerma-1,4-dithian (8) weiter. Man erhält dann diese beiden Heterocyclen als Gemisch im Verhältnis 1:1 nach folgender Summengleichung:

2 $(ClCH_2)(CH_3)_2Si-O-Ge(CH_3)_2(CH_2Cl) + 3 H_2S + 4 (C_2H_5)_3N$

⁴ M. Wieber und C. D. Frohning, Angew. Chem. 78, 1022 (1966).

⁵ M. Schmidt und M. Wieber, Chem. Ber. **94**, 1426 (1961).

Dem Institutsvorstand, Herrn Prof. Dr. Max Schmidt, danken wir ebenso für die finanzielle Unterstützung dieser Arbeit, wie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Experimenteller Teil

1. 1,3-Bischlormethyltetramethyldisilthian (2)

Unter Ausschluß von Luftfeuchtigkeit werden 28,6 g (0,2 Mol) (ClCH₂)(CH₃)₂SiCl und 24,2 g (0,2 Mol) 2,4,6-Trimethylpyridin in 300 ml Et_2 O gelöst und auf — 78° gekühlt. In diese Lösung kondensiert man eine vorher gewogene Menge von 3,4 g H₂S. Nach etwa 60 Min. läßt man das Reaktionsgemisch langsam auf Zimmertemp. erwärmen und rührt dann etwa 2 Stdn. nach. Der Niederschlag (Collidin·HCl) wird in einer Umkehrfritte abgetrennt, der Äther des Filtrats abgezogen und der ölige Rückstand destilliert. Sdp._{0,1} 71—73°, Ausb. 17 g (70% d. Th.).

 $C_6H_{16}Cl_2SSi_2$. Ber. C 29,1, H 6,52, Cl 28,7, S 13,0. Gef. C 29,7, H 7,01, Cl 28,5, S 13,0.

Molgew. (Kryosk., Benzol) Ber. 245, Gef. 247.

¹H-NMR-Spektrum: δ_{CH_2} 2,88 ppm, δ_{CH_3} 0,48 ppm (Singuletts).

2. Umsetzung von 2, 4 und 6 mit Na₂S

 $0,1~\mathrm{Mol}$ Silthian $2~\mathrm{bzw}$. Silazan $4~\mathrm{bzw}$. Germasiloxan $6~\mathrm{werden}$ in $100~\mathrm{ml}$ trock. Dimethylglykol zusammen mit $0,1~\mathrm{Mol}$ trock. Na₂S (dargestellt aus Na und S in flüss. NH₃) unter N₂-Atmosphäre etwa $8~\mathrm{Tage}$ gerührt. Nach dem Abfiltrieren des entstandenen NaCl in einer Umkehrfritte wird das Lösungsmittel am Rotavapor abgezogen und der verbleibende ölige Rückstand destilliert.

3: Sdp._{0,1} 62—64°, Ausb. 50%.

 $C_6H_{16}S_2Si_2$ (208,5). Ber. C 34,6, H 7,70, S 30,7. Gef. C 34,6, H 8,05, S 30,2.

Molgew. (Kryosk., Benzol) Gef. 204.

¹H-NMR-Spektrum: δ_{CH_3} 0,18 ppm, δ_{CH_2} 2,04 ppm (Singuletts).

5: Sdp._{0.1} 60—61°, Ausb. 70%.

 $C_{6}H_{17}NSSi_{2}$ (191,5). Ber. C 37,6, H 8,95, S 16,8. Gef. C 37,3, H 9,51, S 16,7.

Molgew. (Kryosk., Benzol) Gef. 187.

¹H-NMR-Spektrum: δ_{CH_3} 0,15 ppm, δ_{CH_2} 1,48 ppm (Singuletts).

7: Sdp._{0,1} 49—50°, Ausb. 54%.

 $C_6H_{16}OSGeSi$ (237,0). Ber. C 30,4, H 6,82, S 13,6. Gef. C 29,6, H 6,48, S 13,3.

Molgew. (Kryosk., Benzol) Gef. 241.

¹H-NMR-Spektrum $\delta_{\text{CH}_3-\text{Si}}$ 0,12 ppm, $\delta_{\text{CH}_2-\text{Si}}$ 1,45 ppm, $\delta_{\text{CH}_3-\text{Ge}}$ 0,40 ppm, $\delta_{\text{CH}_3-\text{Ge}}$ 1,67 ppm (Singuletts).

3. Umsetzung von 3, 5 und 7 mit Methyljodid

Ca. 0.5 g der Heterocyclen (3,5 bzw. 7) werden in ca. 20 ml $\it Et_2O$ gelöst und mit 5 g CH₃J versetzt. Nach 10täg. Stehen wird der Niederschlag abfiltriert und getrocknet.

 $3 + \text{CH}_3\text{J}$: Schmp. 137—139°.

 $C_7H_{19}Si_2S_2J$. Ber. C 24,0, H 5,47, S 18,3, J 36,2. Gef. C 23,5, H 5,80, S 18,0, J 35,9.

 $5 + \text{CH}_3\text{J}: \text{Schmp. } 139-141^\circ.$

 $C_7H_{20}Si_2NSJ$. Ber. C 25,2, H 6,05, N 4,2, S 9,6, J 38,1. Gef. C 25,0, H 5,88, N 3,8, S 9,5, J 37,7.

 $7 + CH_3J: Schmp. 141-143^{\circ}.$

C₇H₁₉OSJGeSi. Ber. C 22,2, H 5,05, S 8,5, J 33,5. Gef. C 21,9, H 4,85, S 8,0, J 33,7.

4. Umsetzung von 6 mit H₂S/(C₂H₅)₃N

Zu einer gekühlten Lösung von 2,7 g 6 und 2,2 g $(C_2H_5)_3N$ in 50 ml Benzol kondensiert man ca. 1 g H_2S und läßt langsam auftauen. Nach 10stdg. Rühren bei Zimmertemp. wird vom Niederschlag abfiltriert und die Benzollösung mit Na_2SO_4 getrocknet. Eine Probe der Lösung wird 1H -NMR-spektroskopisch vermessen:

Es zeigen sich 4 Signale (Singuletts) im Flächenverhältnis 1:1:3:3, die durch ihre Shiftwerte zugeordnet werden.

 $\delta_{\text{CH}_3-\text{Si}-\text{O}} \ 0.19 \ \text{ppm}$ $\delta_{\text{S-CH}_2-\text{Si}} \ 1.47 \ \text{ppm}$ $\delta_{\text{CH}_3-\text{Ge}-\text{S}} \ 0.58 \ \text{ppm}$ $\delta_{\text{S-CH}_2-\text{Ge}} \ 2.04 \ \text{ppm}$

Bei der fraktionierten Destillation erhält man zwei Hauptfraktionen:

- 9: Sdp.10 70°.
- 8: Sdp._{0,1} 71°, Schmp. 76°.